MWPS-Truss 24'

Truss 24'

24' span, 2-web trusses

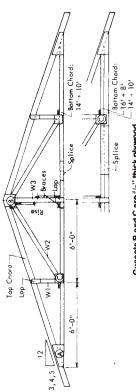
CAUTION!

Additional professional services will be required to tailor this plan to your situation, including but not limited to: assurance of compliance with codes and regulations; review of specifications for materials and equipment; supervision of site selection, bid letting and construction; and provision for utilities, waste management, roads or other access. Furthermore, any deviation from the given specifications may result in structural failure, property damage, and personal injury including loss of life.

WARRANTY DISCLAIMER

This plan provides conceptual information only. Neither midwest plan service nor any of the cooperating land-grant universities, or their respective agents or employees, have made, and do not hereby make, any representation, warranty or covenant with respect to the specifications in this plan. Additional professional services will be required to tailor this plan to your situation, including but not limited to: assurance of compliance with codes and regulations; review of specifications for materials and equipment; supervision of site selection, bid letting and construction; and provision for utilities, waste management, roads or other access.

MIDWEST PLAN SERVICE


Cooperative Extension Work in Agriculture and Home Economics and Agricultural Experiment Stations of North Central Region - USDA Cooperating

24' Truss

Title Page

MIDWEST PLAN NO. 24' Truss

24'-span, 2-web trusses with plywood gussets

W3	'n	4	52
W2	7	7	œ.
W1	2,	7	'n
Top Chord	13.	,3 ,3	14.
S. Se	3.0	.0.4	5.40.
Root Slope	3/12	4/12	5/12

4+4, 4+6, 6+6 indicates stacked lower chord. 4&4, 6&4, indicate double web; a 2x4 is attached to the web member to increase its stiffness.

This sheet is to help you SELECT and ERECT trusses. DO NOT try to BUILD trusses from it, because it does not include enough information on gluing, joints, splices, and fabrication. See "Designs for Glued Trusses," MWPS-9. If you buy metal-plate trusses, use their designer's data.

Gussets B and C are 3/8" thick plywood. Table of lengths

To select a truss:

- setimate roof dead load
 determine appropriate snow load
 roof dead load plus snow load = roof design load, psf
- for the lumber quality, slope, spacing, and ceiling dead load you will use. 4. select a truss to carry at least the total roof load

For more information see back page and MWPS-9, Designs for Glued Trusses, 4th Edition, 1981.

Truss spacing, ft.

1400f Lumber

					-	Callian	40.00	band hand hand		,	1	4	4000			a	4
	chord bord	Bottom	۰	40			2		0	'n	•	A A	W1 W2 W3	W3	¥ 1	ž	, I
				ľ	-Max.	+ MOUS	roof d	Max. snow + roof dead load, pst	pst			L					
•	2×4	2×4	39	37	34	17	14	0	0	0	0	2×4	2×4	2×4	3/8x3½x19	8×12	8x8
əd	2x6	2×4	74	70	68	32	22	17	16	0	0	=	÷	ε	½x4×17	10×16	8×10
OĮ	2x6	2x6	72	19	99	31	28	56	15	12	0	=	=	Ξ	3/8×4×31	=	=
5 2	2x8	2×6	100	90	91	43	38	35	21	16	0	2×4	2×4	2×4	15x4x23	12×16	8x10
; L	2×10		ı	100+	100+	99	9	24	33	22	0	=	:	Ξ	15x4x32	14×16	10×12
ε	2×12	9+7	ι	,	1	98	9/	75	43	37	31	ī	=	=	½x4×36	16x16	12×12
	2×12	9+9	ı	ŀ	1	83	7.7	70	41	35	32	:	:	z	77×7×5;	I	16×10
	2x4	2×4	77	42	17	19	17	0	0	0	0	2×4	2×4	2×4	3/8x3½x17	8×12	8x8
ə	2x6	2×4	87	82	81	38	30	0	19	0	0	=	=	=	3x4x16	12×12	8×10
do	2×6	2x6	85	42	9/	37	33	31	18	15	13	=	=	=	3/8×4×28	10×16	10×10
IS	2×8	2x6	100+	100+	100+	55	51	67	2.7	23	16	2×4	2×4	2×4	12x4x22	12×16	10×10
7	2x10		,	1	,	7.5	69	89	37	32	0	=	Ξ	Ξ	3x4x25	14×16	12x10
l/t	2×12	9+4	1	ı	1	86	90	06	67	45	41	=	=	Ξ	12x4x32	18×16	14×12
7	2×12	9+9	ı	1	1	94	98	98	14	43	33	=	:	z	½x4x34	16×20	16x12
	2×4	2x4	48	94	45	21	19	0	0	0	0	2×4	2×4	2×4	3/8x3½x14	8×12	8×8
9(2×4	96	91	9.1	42	39	0	21	0	0	Ξ	:	=	3x4x14	10x16	8×10
Job		2×6	76	88	86	41	38	36	20	17	15	Ξ	±	:	3/8×4×25	=	=
S	2x8	2×6	100+	100+	100+	61	99	54	30	27	19	2×4	2×4	2×4	12x4x20	12×16	8×10
15		_	1	4	ı	83	77	9/	41	37	0	=	=	=	½×4×23	16×16	12×10
/9	2×12	9+5 7	1	ı	(100+	86	100	53	67	47	Ξ	z	=	12x4x29	16×20	12×12
i		9+9 7	1	ı	1	1	9.5	96	52	47	45	=	Ξ	=	12×4×29	=	14×12

Lumbe	
1600f	

Gusset Sizes, in.

Web member sizes W1 W2 W3

Celling dead load, psi

Trues spacing, ft.

1100f Lumber Top Bottom chord chord 10×10° 12×10 14×12

³2x4x28 3/8x4x47 3/8x4x51 3/8×4×31

2x4

2×4

16 26 33 33

65 100+

69 69

2x4 2x4 2x6 2x4 2x6 2x6 2x8 2x6 2x10 4+4 2x12 4+6 2x12 6+6

3/12 Slope

8×8

12×12

8x8

3/8×3½×16 3/8×4×23 3/8×4×26

2x4

0 12 12

27 46 52

8x8 8x10

3/8x3½x14 3/8x4x22 3/8x4x23

2x4

2×4

000

13 13 26

33 67 64 95 100+

2x4 2x4 2x6

2x6 2x6 2x6

32 54 62 91 100+

±001 36 71 68

4/12 Slope

2x8 2x6 2x10 4+4 2x12 4+6 2x12 6+6

8×10, 12×10, 14×10, 16×10

14x12 14x16 16x16

2×4

2×4

0 0 23 31

17 19 35 33

41 56 73 70

44 61 80 76

115 115 127 138 138

0 25 25 72 72 66

2x4

8x10 10x10 12x10 16x10

12x16 14x16 16x16 18x16

\(\frac{1}{2}\)x4x16 \(\frac{1}{2}\)x4x18 \(\frac{1}{2}\)x4x23 \(\frac{1}{2}\)x4x28

2x4

: : : x

2×4

46 62 80 77

1004 35 71 69

1001

100t

2/15 Slobe

2x8 2x6 2x10 4+4 2x12 4+6 2x12 6+6

8 : :

8×12 10×12

3/8x4x20 3/8x4x20 $3/8 \times 3^{1}_{2} \times 12$

5×4

2×4

2x4

0 17 16

0 0 28

15 17 30

37 72 72

39 78

2x4 2x4 2x6

2x4 2x6 2x6

Truss spacing, ft

							•								SnS	Gussel Wzes, In	
				7			•			0							i
ř	Top	Bottom	0	sc.	80	Celling	Celling dead load, ps 0 5 8	ad pst		N.		Web	Web member sizes W1 W2 W3	w3 W3	¥ #	o ¥	o ¥
i				Ι΄	-Max	+ Mous	roof de	roof dead load, pst-	1					ļ			
-	2×4	2×4	4.7	44	43	20	17	0	c	0	0	2x4	2×4	2×4	3/8×3½x22	8×12	8×8
	2×6		80	90		38	33	0	19	0	0	2	÷	=	2x4x20	10x16	8×10
ob			87	81	78	38	75	32	1.9	1.5	13	=	=	=	3/8×4×36	Ξ	10×10
	2×8	2×6 14	100+	100+	100t	52	1.7	77	56	21	16	2×4	2×4	2×4	15×4×27	12×16	10×10
	_			1	ì	80	7.3	7.1	07	34	0	÷	=	=	£x4×33	14×20	12×10
		9+9		1)	100+	96	92	51	4.5	4.1	÷	ŧ	Ξ	12x4x41	16×20	14×12
		9+9	1	,	1	•	06	9.1	20	4.5	41	=	ī	=	77×7× ² 1	=	16×12
	2×4	2×4	53	20	67	23	21	14	0	0	0	2×4	2×4	2×4	3/8x3½x19	8×12	
	2×6	_	±00	56	66	4.5	43	14	22	0	0	:	Ξ	=	2x4x18	10×16	10×10
ob	2x6			9.5	65	7.5	7.7	39	22	19	17	:	Ξ	=	,2x4×18	=	
	2×8	2x6		+001	100+	99	61	59	33	56	26	2×4	2×4	2×4	3x4x26	14×16	10×12
	_	37+7	,	,	ı	9.1	7,00	83	4.5	42	18	=	:	÷	12x4x31	14×20	12×12
			ł	,	ı	100+	100+	100+	89	54	51	ī	=	Ξ	12x4x38	16×20	16×12
			,	1	ı	·	ï	1	95	51	67	Ξ	=	:	½x4x38	18×20	18×14
	2×4	2×4	15	55	3,5	25	23	2.1	1.2	0	0	2×4	2×4	2×4	3/8×3½×17	8×12	8x8
_	2×6		+001	100+	100+	20	47	2.1	25	0	0	=	:	÷	12x4x17	10x16	8×10
_ lot	2×6		,		,	64	97	4	24	21	20	=	Ξ	ī	12x4x17	z	Ξ
	2×8	2×6	,	1	1	73	89	65	36	33	31	2×4	2×4	2×4	15x4x22	14x16	8×12
_	_		,	1	ı	100	9.5	63	20	97	22	:		=	13x4x28	14×20	10×12
			1	,	ı	,	100+	100+	79	65	99	=	÷	=	3x4x34	18×20	14×12
		9+9	,	i	,	1	4	+	62	57	54	=	=	=	12x4x34	=	16×12

24' Trusses

This page is a summary of the information in "Designs for Glued Trusses," MWPS-9. Refer to this publication before building trusses.

ROOF SLOPE (inches of rise/inches of run)

Roof slope significantly affects the forces in the

short spans and narrow spacings. truss members. A steeper roof allows higher roof loads. 3/12 slope—used in low snow load areas or for

5/12 slope—used in high snow load areas or for long spans and wide spacings. 4/12 slope—most common for farm buildings.

TRUSS SPACING

desirable to support each truss on a pole.

2' spacing uses more material and labor. It is Roof and ceiling materials and wall framing in-fluence truss spacing selection. In pole buildings it is

common for buildings with ceilings and plywood roof spacing is common in insulated livestock

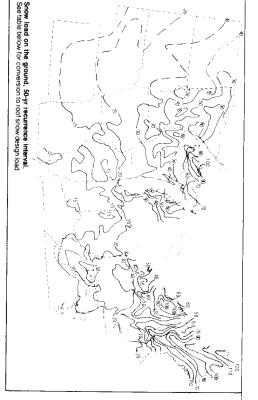
storage buildings. buildings with ceilings and metal roofs, and in some

8' spacing uses least material and labor for buildings without ceilings such as machinery storages, uninsulated livestock buildings, etc. Total cost may be greater if a ceiling is needed

CEILING DEAD LOAD

Three ceiling dead load cases are included in the

- · 0 psf allows for no materials in addition to the
- truss bracing and stiffeners
 5 psf ceiling dead load allows for a metal buildings). plywood ceiling with insulation (warm livestock
- 8 psf ceiling dead load allows for a gypsum board mercial buildings) ceiling with insulation (residential or light com-


ROOF DEAD LOAD

Add the weights of the truss, purlins or decking roofing, and roof insulation to get the dead load on the top chord.

Approximate weights of trusses, psf

Example: a 4-web truss for 4' spacing with 2x8 top chord and 2x6 bottom chord weighs about $13+0.7=2.0\,\mathrm{psf}$. Dashed lines in table indicate example.

Ghord	size	2.	4,
Top	Buttom	Truss	Truss dead weight,
2×4	2×4	1.6	0.8
2×6	2×4	2.0	1.0
2×6	2×6	2.4	1.2
2 x 8	2x6	2.7	1.3
2×10	2x4+2x4	υ 	1.6
2x12	2×4+2×6	4.0	2.0
2×12	2x6+2x6	4.4	2.2
Add t	Add the following for:	for:	
2-64-Web	Web Truss	1.4	0.7
6 Web	Web Truss	2.1	1.2

SNOW LOAD

termining snow load for your building Use the map above and the table below for de

Recommended snow loads

Recommended by the MAPS and NRAES Committees for roots up to about 12 slope for buildings colose the jurispection of a building colo-Earn buildings. 50-yr map load x 0 90 ; 25-yr 0.8 ftr sows or nod Other buildings. 50-yr map load x 0 8 to convent from snow on ground to

Minimum recommended load is 12 psf In areas where all of the maximum snow load results from a single storm without significant wind, the maximum rood load may equal the ground snow

120	110	1 00	8	8	70	60	50	40	30	20	15		Map load		
86.4	79.2	72.0	64.8	57.6	50.4	43.2	36.0	28.8	21.6	14.4	12.0	psf · · ·	Farm	Roof snow load	
 8	88	80	72	2	56	48	\$	32	24	16	12		Other	w load	

Weights of roofing and ceiling materials

01-0.4	Insulation, per inch of thickness
2.6	Asphalt shingles
09	28 ga steel
0.4	0.024 aluminum
1.4	;2 plywood
1	, plywood
2.2 pst	1 lumber solid
	Sheathing, etc.
07	2x4 furring, 2" o.c
0.4 psf	1x3furring, 16 To.c.
	Ceiling traming
	2x6 purlins, 2 o.c.
0.7 psf	2x4 purlins, 2' o.c.
	Roof framing

Wind Loads

mph on a building less than 30' high. Trusses are designed to withstand winds of 8

LUMBER

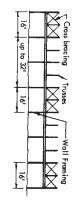
Three lumber groups are indicated in the tables. Example of species in each group are listed below 2x6 + = 2x6 2x8 2x10.2x12.

SS = Select structural

15%) $= $ moisture content at time of milling.	time of milling.	
600 Group pecies	Grade	Size
ouglas Fir—Larch	SS 1	2x4 2x6
Sucias Eir arab (North) No 1	-	?

	8	2
Douglas Fir—Larch (North)	SS 1	2x4 2x6
Southern Pine (15%)	No. 2 dense	2 X 4
Southern Pine (19%)	No. 1 No. 2 dense	2x4 2x6
1400 Group		
Douglas Fir—Larch	No. 2	2x4 2x6
Douglas Fir—Larch (North)	No 2	2x6
Hem—Fir	No. 1	2×4
Southern Pine (15%)	No. 2	2x4
Southern Pine (19%)	No. 2	2x4 2x6
Spruce—Pine—Fir	SS	2x4
1100 Group		
Douglas Fir—Larch	No. 2	2x6·
Douglas Fir (North)	N	2 X 6 X
Douglas Fir (South)	No. 2	22 X6 6, 4
Hem—Fir	No. 2 No. 1	2x4 2x6
- 1	No. 1	2x4
Hem—Fir (North)	SS	2x6-
Southern Pine (15%)	₹ . 2 -	2x6
Southern Pine (19%)	No. 2	2x6
Spruce Pine Fir	8 No. 1	2x4
	S	2x6

Use exterior, C-C grade ½" or ½" plywood with outer plies of Group 1 species wood, Identification Indexes, 240 and 3216 respectively.

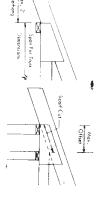

Use 3-ply ½", plywood and 5-ply ½" plywood or use

Structural I, 4-ply, 1/2" plywood

BUILDING CONSTRUCTION

Windbracing

Brace and anchor the trusses as they are placed. Bottom chord stiffeners are required at panel points unless a rigid ceiling is to be installed. Use king post crossbracing in all buildings.

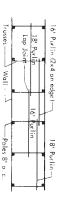

Wind Anchorage

 $\label{eq:Minimum fasteners} Minimum fasteners for wind anchorage, both ends of each truss.$

A = metal framing anchor 4-30d ring-shank nails = 1	52'-60'	48 -50	32-46	26-30	20-24	Truss Span	,
A = metal framing anchor 4-30d ring-shank nails = 1/2" bol	1A or 1B	2	Truss				
bolt	2A or 2B	2A or 1B	2A or 1B	1A or 18	1A or 1B	4.	Truss Spacing
B = 1/2" bolt	4A or 3B	4A or 2B	3A or 2B	2A or 2B	2A or 1B	œ	

Overhang

For a 2' to 4' overhang, use the top chord and heel gusset design for a V_3 larger snow load.



Roof Purlins

spacings and buttjoints used.

Alternating purlin lengths may be used in pole Stagger purlin joints for continuity across the trusses. Purlins may be laid flat with 2' and 4' truss

buildings where the poles are spaced evenly and the trusses are not. For poles 8 o.c. they may be of alternating 16 and 18 lengths with staggered and alternate sides of the poles lapped end joints if pairs of trusses are mounted on

